





## INTRODUCTION

COVID19-related school closures have forced education researchers to pivot from in-person to remote research methods. Researchers have leveraged technology, like Skype and Zoom, to collect data remotely. However, the use of technology-based remote data collection methods is often not feasible for participants who may not have access to smartphones/computers and adequate internet service. These barriers are further exacerbated in rural, low-resource communities, particularly in low and middle income countries.

We developed and deployed a simple mobile phone-based language and literacy assessment for primary-school children participating in an ongoing study of reading development in rural Côte d'Ivoire.

### Research questions:

- Is a phone-based literacy and language assessment reliable and valid?
- 2. Is it as reliable and valid as an existing in-person literacy and language assessment?

## METHODS

Participants. 692 (M<sub>age</sub>=10.8 years; SD<sub>age</sub>=1.45 years) fifth grade children from 32 schools in rural Côte d'Ivoire participated in this study. Children were a part of a larger study of reading development.

**Procedure.** Children completed in-person assessments in Nov 2019, and phone-based assessments one year later in Nov 2020.

**In-person:** Children completed phonological awareness (PA), vocabulary, oral language comprehension, and reading (letter, word, pseudoword and passage reading) tasks (EGRA; Gove & Wetterberg, 2011; RTI International, 2015; Woodcock, McGrew & Mather, 2001; Bruce, 1964; Yopp, 1995).

**Phone-based:** Children completed the same tasks using text messaging and voice call over a simple mobile phone.



Figure 1. Picture of an experimenter and a child completing the in-person assessment.

Figure 2. Picture of a child using the simple mobile phone to complete the phone-based assessment.



# Is a Phone-Based Literacy Assessment a Reliable and Valid Measure of Children's Reading Skills for Low Resource Settings?

RESULTS

Shauna-Marie Sobers<sup>1</sup>, Nana N'Goh<sup>2</sup>, Fabrice Tanoh<sup>2</sup>, Hermann Akpe<sup>2,3</sup>, Mary-Claire Ball<sup>4</sup>, Kaja K. Jasińska<sup>1,5</sup> <sup>1</sup>University of Toronto<sup>2</sup>Université Félix Houphouët-Boigny<sup>3</sup>Réseau Ouest et Centre Africain de Recherche en Education (ROCARE)<sup>4</sup>University of Delaware <sup>5</sup>Haskins Labratories

**Table 1.** Reliability (Cronbach's alpha and inter-item mean).

| Tasks                 | Cronbach's Alpha |      | Inter-item Mean |      | Alpha Coefficient    |
|-----------------------|------------------|------|-----------------|------|----------------------|
| PA                    | 0.81             | 0.81 | 0.11            | 0.29 | t(677.5)=0, p=1      |
| Vocabulary            | 0.62             | 0.59 | 0.14            | 0.13 | t(676)=1.126, p=.260 |
| Letter Reading        | 0.94             | 0.96 | 0.15            | 0.18 | t(676)=6.515, p<.001 |
| Word Reading          | 0.85             | 0.82 | 0.11            | 0.19 | t(689)=3.755, p<.001 |
| Pseudoword<br>Reading | 0.87             | 0.83 | 0.17            | 0.09 | t(421)=4.326, p<.001 |

in-person

phone-based

**Reliability - Internal Consistency.** Overall, there was high internal consistency for the phone-based assessment and in-person assessment.

No significant differences between the phone-based and in-person alpha values for PA and vocabulary tasks were observed. However, the phone-based letter, word, and pseudoword reading tasks showed significantly different alpha values compared to the in-person reading tasks (higher for phone-based letter reading, but higher for in-person based word and pseudoword reading).

|                | Letter Reading      |                       | Word Reading          |                       | <b>Pseudoword Reading</b> |                       |
|----------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------------|-----------------------|
|                | β(SE)               | β(SE)                 | β(SE)                 | β(SE)                 | β(SE)                     | β(SE)                 |
| PA             | 3.77(0.21)***       | 2.97(0.27)***         | 3.33(0.14)***         | 2.88(0.19)***         | 2.59(0.11)***             | 3.12(0.26)***         |
| Vocabulary     | 0.77(0.18)***       | 1.38(0.29)***         | 0.40(0.11)***         | 0.72(0.22)**          | 0.38(0.09)***             | 1.24(0.31)***         |
| R <sup>2</sup> | 0.43                | 0.27                  | 0.56                  | 0.33                  | 0.57                      | 0.43                  |
| Model          | F(2,<br>656)=247*** | F(2,<br>676)=124.2*** | F(2,<br>657)=421.7*** | F(2,<br>676)=168.5*** | F(2,<br>661)=433.2***     | F(2,<br>413)=156.9*** |
| Ν              | 659                 | 679                   | 660                   | 679                   | 664                       | 416                   |

**Table 2.** Regression results for in-person and phone-based measures.

in-person

phone-based

**Criterion Validity.** PA and vocabulary, known predictors of reading, should predict reading scores across both in-person and phone-based measures. We found that PA and vocabulary for both the in-person and the phone-based assessments predicted letter, word, and pseudoword reading. PA was more robustly associated with in-person than phone-based reading scores, but vocabulary was more robustly associated with phone-based reading scores. R<sup>2</sup> values were higher for all in-person versus phone-based models.

p<.05\*, p<.01\*\*, p<.001\*\*\*

| Measures              | PA  | Vocabulary | Letter<br>Reading | Word<br>Reading | Pseudoword<br>Reading |
|-----------------------|-----|------------|-------------------|-----------------|-----------------------|
| ΡΑ                    | .59 | _          | _                 | -               | _                     |
| Vocabulary            | _   | .48        | _                 | -               | _                     |
| Letter Reading        | _   | _          | .58               | -               | _                     |
| Word Reading          | _   | _          | _                 | .77             | _                     |
| Pseudoword<br>Reading | _   | _          | _                 | _               | .77                   |
| in-person             |     |            |                   |                 |                       |
| phone-based           |     |            |                   |                 |                       |

**Convergent Validity**. Moderate to strong correlations observed between in-person and phone-based assessments, indicating validity.

In this study, we developed a simple mobile phone-based language and literacy assessment to be used in low-resource settings.

1. Is a phone-based language and literacy assessment reliable and valid? Yes. A phone-based language and literacy assessment is a reliable and valid measure, seen by the high internal consistency and moderate to high correlations.

2. Is a phone-based language and literacy assessment as reliable and valid as an existing in-person language and literacy assessment? Our phone-based assessment had different internal consistency for reading tasks compared to an in-person assessment. We also found differences in the statistical relationships between PA and vocabulary, and letter, word, and pseudoword reading measures for phone-based and in-person tasks, suggesting a need for additional analysis (including factor analysis for validity).

Our preliminary work supports the reliability and validity of simple phone-based language and literacy assessment, We show that low-cost technologies offer the potential to measure children's literacy and language development.

Shauna-Marie Sobers. BA. MA shaunamarie.sobers@mail.ut https://www.oise.utoronto.ca/bo

Dr. Kaja Jasińska, PhD kaja.jasinska@mail.utoronto. REFEF

Gove, A., & Wetterberg, A. (Eds.) (2011) Applications and interventions to improve https://doi.org/10.3768/rtipress.2011.bk.00

RTI International. (2015). Early Grade Rea ed.). United States Agency for International

Woodcock, R.W., McGrew, K.S., & Mathe achievement. Riverside Publishing.

(((Haskins Laboratories))) THE SCIENCE OF THE SPOKEN

**Table 3.** Correlations between in-person and phone-based measures.

**NIVERSITY**OF ELAWARE.

## DISCUSSION

| CONTAC                                                                                                                                      |                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-CSE<br>pronto.ca;<br>oldlab/                                                                                                              | bood labu<br>bain organization for language and literacy development                                                                                                                                        |
| ENCES                                                                                                                                       | FUNDING                                                                                                                                                                                                     |
| The Early Grade Reading Assessment:<br>basic literacy. RTI Press.<br>007.1109<br>ading Assessment (EGRA) Toolkit (Second<br>al Development. | Jacobs Foundation Early Career Award<br>2015118455 (Jasińska, PI); Jacobs Foundation<br>Science Capacity Building Grant 2015-1184<br>(Jasińska, PI), Jacobs Foundation Research Grant<br>(Jasinska, co-PI). |
| r, N. (2001). Woodcock-Johnson III tests of                                                                                                 |                                                                                                                                                                                                             |

We thank all our participants and research assistants in the BOLD lab.